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Abstract

Dealing  with  the  volume  of  multimedia  collected  on  a  daily  basis  for 

intelligence gathering and digital forensics investigations requires significant manual  

analysis.  A component  of  this  problem is  that  a  video may be reanalyzed  that  has 

already  been  analyzed.  Identifying  duplicate  video  sequences  is  difficult  due  to 

differences  in  videos  of  varying  quality  and  size.  This  research  uses  a  kd-tree 

structure to increase image matching speed. Keypoints are generated and added to a  

kd-tree of a large dimensionality (128 dimensions). All of the keypoints for the set of  

images are used to construct a global kd-tree, which allows nearest neighbor searches 

and speeds up image matching. The kd-tree performed matching of a 125 image set  

1.6 times faster than Scale Invariant Feature Transform (SIFT). Images were matched  

in the same time as Speeded Up Robust Features (SURF). For a 298 image set, the kd-

tree  with  RANSAC performed  5.5  times  faster  compared  to  SIFT  and  2.42  times 

faster than SURF. Without RANSAC the kd-tree performed 6.4 times faster than SIFT 

and 2.8 times faster than SURF. The order images are compared to the same images 

of  different  qualities,  did  not  produce  significantly  more  matches  when  a  higher 

quality  image is  compared to  a  lower  quality  one or  vice  versa.  Size  comparisons  

varied  much  more  than  the  quality  comparisons,  suggesting  size  has  a  greater 

influence on matching than quality.
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APPLYING IMAGE MATCHING TO VIDEO 

ANALYSIS

 I  Introduction

Due to volume, intelligence and forensic analysts may reanalyze a video that has 

been previously analyzed. Performing the identification of duplicate video sequences can 

be difficult because of different video sizes and qualities. Furthermore, video may have 

even been analyzed previously by another analyst. With no personal exposure to the prior 

analysis,  the analyst would not even know it was already analyzed. 

The National Center for Missing and Exploited Children (NCMEC) keeps lists of 

hash  values  of  known  child  pornography  images  and  videos  [1].  The  lists  are 

disseminated among law enforcement agencies to help identify victims. The Cait series is 

a series of images often found in child pornography cases. There are 7617 hash values 

from the 2009 NCMEC list of the Cait series.

Even  though  having  the  hash  value  is  strong  evidence  to  show  an  image  is 

pornographic, every small change in the image causes that hash value to change.  Image 

matching techniques can aid in identification of suspected images by matching image 

features, which can tolerate small changes, to known child pornography . 

Image matching algorithms, such as Scale Invariant Feature Transform (SIFT) [2] 

and Speeded Up Robust Features (SURF)  [3], generate keypoint files from a video or 

image for later retrieval by an analyst to efficiently search for repeated video sequences. 
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Possible data structures for storing keypoints are kd-trees [4][5] and Bloom filters [6][7].

Details to consider for a video matching system include the matching algorithm 

run time, the order the images are compared, and the accuracy of the matching methods. 

 1.1  Research Goal

The  goal  of  this  research  is  to  further  the  knowledge  and  methods  used  in 

image matching as it pertains to intelligence analysis and forensic investigations. 

This  research  determines  if  a  new  video  has  already  been  examined  or 

anything  new has  been introduced  that  needs  to  be  analyzed.  This  can  reduce  the 

manpower currently taken to analyze new videos that really do not need it. The scope  

of this research can also be expanded to law enforcement,  who examines videos of  

crimes take from a variety of devices.

• Determine  if  applying  data  structures  (Bloom filters  [6][7],  kd-trees  [4][5]) 

benefit the matching process in the form of accuracy and speed 

• Determine  the  impact  of  image  size  and  lossy  compression  quality  on  the 

matching process

 1.2  Sponsor

This  research  supports  the  Air  Force  Research  Laboratory  (AFRL), 

Communications  Exploitation  Branch.  AFRL  leads  the  discovery,  research  and 

development of information processing techniques by exploiting advanced technologies 

to intercept, collect, locate, track and process both covert and overt raw multi-sensor data 

for communications Intelligence. 
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 1.3  Assumptions

All of the images in the first dataset of 125 images are assumed to have come 

from the same source camera. Likewise all the images from the second dataset of 298  

came  from  the  same  source  video.  There  were  no  comparisons  or  testing  done 

between the two sources. The 102 keypoints selected for the keypoint reduction was 

based  on  [8].  This  number  was  chosen  through  trial  and  error.  The  autopano-sift 

software  [5] was  designed  for  panoramic  stitching  and  not  for  image  matching  in 

general. 

 1.4  Organization

Chapter  II provides  background  information  on  image  feature  generation 

algorithms (SIFT, SURF, HOG), image matching techniques, hashing techniques and 

data  structures  (Bloom  filter,  KD-tree).  Chapter  III presents  keypoint  reduction 

methods,  KD-tree generation  and RANSAC model  matching.  Chapter  IV describes 

the data sets, tests used and the results from the testing. This chapter also discussed 

the  accuracy  of  the  algorithms,  computation  time  and  quality  and  size  variation  

comparisons. The final chapter discusses conclusions and future work.
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 II  Related Work

This section reviews previous work related to  image and video matching.  It  

discusses matching algorithms and the extraction of high-resolution stills from video 

and critical  video quality.   Hashing methods,  used to quickly determine if  matches  

exist  in  the  database  of  previously  examined  images/videos,  are  reviewed  and 

discussed.

Image features generated by the Scale-Invariant Feature Transform (SIFT) and 

the Speeded-Up Robust Features (SURF) algorithms are discussed. Once the features 

are  generated they will  be added to a  data  structure.  Storing the features  in a  data  

structure allows for faster comparisons. The data structures discussed include Bloom 

filters [7] and kd-trees [5]. Finally, previous research on image and video matching is  

discussed.  Including  extraction  high-resolution  stills  from  videos  and  the  critical 

video quality. 

 2.1  Image Features

Image features are pieces of information such as edges and contrast extracted 

from  images  for  computer  vision  applications.  Features  are  calculated  differently 

depending on the algorithm.

 2.1.1  Scale-invariant feature transform (SIFT)

The SIFT algorithm  [9] performs image recognition by transforming images 

into  local  feature  vectors  called  keypoints.  Keypoints  are  invariant  to  translation,  

scaling, and rotation, and partially invariant to illumination changes.  
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The  algorithm  generates  a  large  number  of  keypoints,  roughly  1000  for  a 

512x512  pixel  image.  Given  such  a  large  number  of  distinctive  keypoints,  the 

algorithm can match scenes and objects with a high probability [2]. The algorithm has 

four major stages.

Figure 1: Image pyramid example.

 The first stage looks for locations that are the maximum or minimum of the 

difference-of-Gaussian  function.  This  function  enhances  a  grayscale  image,  the 

maxima  and  minima  of  which  are  used  to  generate  a  feature  vector.  An  image 

pyramid is built to determine maxima and minima pixels. The pyramid consists of the  

smoothed and resampled image at each level. An example of this is in Figure 1. Since 

the 2D Gaussian function is separable, its convolution with the input image can be  

efficiently computed by applying two passes of the 1D Gaussian function, below, in 

the horizontal and vertical directions [2]

g x = 1
5

e−x2 /22
. (1)
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The  first  image,  A,  is  computed  using  the  Gaussian  function  with  =2 .  The 

Gaussian  function  is  applied  again  to  produce  a  smoothed  new  image,  B.   The 

difference-of-Gaussian function is found by subtracting image B from image A. The  

pixels  in  the  difference-of-Gaussian  image  are  compared  to  their  8  immediate 

neighbors and their 9 neighbors in each neighboring pyramid scale level. If the pixel  

is a maxima or minima compared to its 26 neighboring pixels then it is selected as a 

potential keypoint.

Next, keypoints are chosen based on measures of their stability, that is a model 

fit  to  their  location and scales  [2].  To determine if  the potential  keypoint  is  stable 

enough  each  scale  level  of  image  A is  processed  to  extract  the  gradients  and 

orientations using 

M i j=Ai j−Ai1, j 
2Ai j−Ai , j1

2

Ri j=atan2Ai j−Ai1, j , Ai , j1−Ai j
(2)

where Ai j is the i, jth pixel, Mi  j  is the gradient magnitude,  and Ri  j is the orientation. 

The  image  is  subjected  to  affine  projections,  contrast  and  brightness  changes,  and 

addition  of  noise.  The  keypoints  in  the  original  image  can  be  predicted  in  the 

transformed images from the knowledge of the transform parameters. The stability of  

the keypoints to image transformation is determined by the percentage of keypoints in 

the  first  image  and  with  matching  keypoints  in  the  transformed  image.  These 

keypoints are in areas of high variation.  Orientations  are assigned to the keypoints  

based  on  the  gradient  of  the  image.  Finally,  gradients  around  the  keypoints  are  
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measured and transformed into a representation that can specify shape distortions and 

changes in illumination [2].

To match two images,  the keys from each image are compared to every key  

from the other image to find matches.  Normally,  a single keypoint is matched to a  

large  set  of  features.  If  the  image  is  cluttered,  many  of  the  matches  will  be  false  

positives.  By identifying  subsets  of  keypoints  that  correspond between images  and 

their location, scale, and orientation, correct matches can be found [2]. Each subset of 

3 or more corresponding features of an object and its orientation is tested further. A 

least-squares estimate is made to approximate the object's pose. Any other keypoints 

consistent with this pose are identified, and outliers are discarded. Finally, a detailed  

computation is made of the probability that a particular set of keypoints indicates the 

presence of an object. Object matches that pass all these tests are correct with high 

confidence.

Images featuring an indoor environment can increase computational time while 

decreasing the complexity of the SIFT keypoints  [10]. Images from indoors include 

walls and corners. Floors and ceilings, because of their low contrast uniform texture,  

rarely generate  many SIFT keypoints.  Assuming that  the indoor images  experience 

little  view  point  rotation  then  the  keypoints  from  the  walls  will  not  rotate.  The  

algorithm can be sped up by omitting three of its steps, the calculation of keypoint  

orientation, the generation of additional keypoints at locations with multiple dominant  

orientation and the alignment of the keypoint descriptor to the keypoints orientation  

[10].
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The SIFT algorithm has  been expanded using  principal  component  analysis 

(PCA)  [11].  The  PCA-SIFT  algorithm  modifies  the  fourth  stage  in  the  SIFT 

algorithm, resulting in a key point representation that is simpler, more compact, faster 

and more accurate  [11]. A 41x41 patch is extracted at the given scale, centered over 

the keypoint and rotated to align its dominant orientation to a canonical direction. The 

algorithm then computes an eigenspace to express the gradient images of the patches.  

The gradient is determined for a given patch and a compact feature vector is derived  

using the eigenspace and the gradient  image vector.  The keypoint  is  much smaller  

than the normal SIFT keypoint. 

Comparison  between  PCA-SIFT  and  SIFT  used  a  dataset  of  30  images  

containing 10 household objects. Each object was photographed from three different  

angles. An image was then compared to the remaining set using PCA-SIFT and SIFT. 

Two  points  were  awarded  to  the  algorithm  if  the  two  other  images  of  the 

corresponding object were returned in the top three positions. If only one image was  

returned in the top three then 1 point was awarded, it was awarded no points for all  

other cases [11]. The number points awarded was divided by 60 (the total number of 

correct matches) calculate the accuracy. Using this measure SIFT had an accuracy of  

43% and PCA-SIFT had 68% for the dataset used. The PCA-SIFT algorithm provided 

better matching accuracy and speed for controlled and real-world images [11].

 2.1.1.1  SIFT Keypoint Reduction

The  SIFT  algorithm  generates  a  large  number  of  keypoints  per  images.  

Reducing the number of keypoints increases the speed in the matching process and 
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reduces  the  storage  requirements.  The  method  of  reduction  keeps  the  strongest 

keypoints to ensure the best accuracy in the matching process. Keypoint reduction is  

achieved with the following Mahalanobis distance function to ensure a good keypoint  

spread [8]. Keypoint reduction is an iterative process starting with two points selected 

based  upon  the  scale  of  the  detected  keypoints.  The  keypoints  are  selected  by 

evaluating  each point  (xi,  yi)  using W1Dmahal(xi,  yi)   + W2σ(xi,  yi)  to  get  the highest 

value where σ(xi, yi) is the scale,  Dmahal is the Mahalanobis distance 

Dmahal  xi , y i= xi− yi 
T M x i , yi  (3)

at point (xi, yi),  M is the covariance matrix, W1  is the weighting of the Mahalanobis 

function and W2 is the weighting of the scale of the keypoint [8]. Keypoint selection 

continues  until  the desired number  of  keypoints  are  found. In the case of  [8],  102 

keypoints  are  selected.  This  ensures  that  the  selection  of  keypoints  are  spread 

uniformly and are still strong choices for matching.

 2.1.1.2  SIFT Match Comparisons

Two quality checks are performed to reduce poor keypoint matches during post 

processing [8]. Both import the match points from an output file and the match points 

(x1, y1) and (x2, y2) are converted into lines representing the match lines. The equation  

y = mx+b represents that line with the slope  

m=
y2− y1

x2−x1

 

(4)
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and the y-intercept, b=y1-(mx2). The intersections of all the match lines are calculated. 

If  the  slopes,  m1  and m2,  of  the  two  lines  are  equal  they  are  considered  parallel.  

Otherwise x is calculated using

x=
−b1−b2

m1−m2
.
 

(5)

Using (5) the two possible values of y are calculated from y1 = m1x + b1 and y2 = m2 x 

+  b1.  If  the  values  of  y1 and  y2 are  equal  then  the  point  (x,  y1)  is  added  to  the 

intersection list. 

Both  methods  use  intersections  to  determine  poor  matches  that  should  be 

removed. The first method determines bad matches by finding lines intersecting other  

match lines in the frame.  Figure 2 shows an example of this. A diagonal match line 

intersects the other match lines within the image frame. The match is considered poor 

and is excluded. Lines that are parallel are kept as good matches, as shown in Figure

7. The second method uses the same initial steps and computes a mean intersect point  

from the average x and average y for all the intersect points (x, y)

x=∑
i=0

N xi

N
,and

 
(6)

y=∑
i=0

N y i

N
.  (7)

The average distance from the mean 
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d=∑
i=0

N  xi−x2 yi−y 2

N
 (8)

and standard deviation 

=∑i=0

N d i−d 2

N  
(9)

of the intersect point are calculated using the average intersect point (x  , y  ).

The distance  of  the  intersect  points  of  each  line  from the  average  intersect 

point (x  , y  ) is checked against σ. If the sum of the distances greater than σ  is 90% or 

more of the total number of intersect points associated with the line  [8], the line is 

marked as bad.

 2.1.2  Speeded-Up Robust Features (SURF)

The SURF algorithm [3] operates in a similar fashion as the SIFT algorithm. It 

first finds keypoints or interest points [3]. using a Hessian Matrix. The interest points 

are specified by Haar wavelet responses. A 4x4 square is laid over the interest point  

and the Haar response is  computed for each square.  The responses are summed up 

over each sub-region and form the first set of entries in the feature vector [3]. The two 

image vectors are compared to find matches. The matching process can be improved  

by including the sign of the Laplacian (i.e.,  the trace of the Hessian matrix)  [3] to 

distinguish between bright blobs on dark backgrounds and the reverse. Only features  

with the same type of contrast are compared in the matching stage. The interest points 
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of this algorithm are scale and rotation-invariant, like the SIFT algorithm.

 2.1.3  Histogram of Oriented Gradients (HOG)

The Histogram of Oriented Gradients (HOG) [12] are similar to the keypoints 

used in  the SIFT algorithm,  but  they are  “computed  on a  dense grid  of  uniformly 

spaced  cells  and  they  use  overlapping  local  context  normalizations  for  improved 

12
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performance” [12]. This algorithm was originally developed for pedestrian detection. 

That  is,  mostly  visible  people  in  a  relatively  upright  position.  This  algorithm has 

shown good results applied to infrared images [13] and video streams [14].

 The first step in this process is to compute the gradients of the image. The 

gradient is determined by applying two 1-dimensional filters, [ -1 0 1] and [-1 0 1] T, 

to the horizontal and vertical, respectively. The pixels are organized into square-like  

spatial  regions  called  cells.  The  cell  has  a  predefined  size  in  pixels.  Each  pixel 

calculates  a weighted  vote for an edge orientation  histogram channel  based on the 

orientation of the gradient [12]. The gradients can be signed or unsigned, meaning the 

contrast information that the signs provide is unimportant to the algorithm. Cells are 

organized into blocks in a sliding fashion. Which causes the blocks to overlap one  

another.  The  overlapping  allows  the  cells  to  contribute  several  components  to  the 

final descriptor vector and significantly improves the performance [12].

Cells are grouped together into larger, spatially connected blocks to normalize 

the contrast. Triggs and Dalal [12] explored four normalization schemes, all of which 

provided improvement  over  the  non-normalized  data.  Let  v be  the  non-normalized 

descriptor  vector,  ||v||k  be  its  k-norm  for  k=1,2,  and  є  be  a  small  constant.  The 

schemes are then:
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L2−norm : f = v

∣∣v∣∣222
,

L1−norm : f = v
∣∣v∣∣1 ,

L1−sqrt : f = v
∣∣v∣∣1 .

(10)

The  fourth  scheme,  L2-Hys,  is  L2-norm with  clipping  which  limits  the  maximum 

values of v to 0.2 and renormalizes. 

The  most  frequent  application  of  HOG  descriptors  is  to  identify  standing 

pedestrians in an image [13].

 2.2  High-Resolution Stills

While these feature generation algorithms operate on still images they can also 

be  applied  to  the  intra-coded frames  (I-frames)  of  videos  in  the  MPEG format.  I-

frames are key frames  in an MPEG video, and are full  frames,  and can be treated  

similarly to an image. The other frames are bi-directionally predictive-coded frames  

(B-frames)  and  predictive  frames  (P-frames)  but  they  do  not  contain  as  much 

information and are, consequently, not suitable for video matching  [15]. The MPEG 

format uses a group of pictures (GOP) composed of the three different frames, shown  

in Figure 3. 
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Figure 3: Group of Pictures structure.

Matches are made between videos by extracting the I-frames from the GOP 

and applying a matching algorithm. There has been some research to enhance the I-

frames taken from videos by integrating the neighboring P-frames and B-frames [15]. 

The improvement process uses information from the surrounding frames to estimate  

the high-resolution information in the I-frame. Enhancing lower quality video using  

this method may help produce more accurate key points for the matching algorithms.  

With more keypoints more reliable matches can be established between higher quality  

and lower quality videos. Introducing more than four or five frames into the high-

resolution enhancement algorithm, however, reduces the quality of the image [15].

The frames directly predicting an I-frame, that is neighboring frames up to the 

first P-frame in a GOP down to and excluding the P-frame of the previous GOP, are 

used to compute a high resolution video still. The frames that contribute most to the  

high resolution still  can be seen in  Figure 4. If two frames were used to estimate a 

high-resolution still,  the I-frame and the first provide the most information. If three 
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frames were used then the I-frame, P-frame, and B-frame immediately before the I-

frame should be used.

Once  the  frames  and  corresponding  motion  fields  are  decoded,  each  high-

resolution  motion  field  is  computed  by  up-sampling  using  a  cubic  B-spline  

interpolation  [16].  Block  matching  determines  the  displacement  of  a  pixel  block 

within a search region between the two frames and is applied to the two up-sampled 

frames.  Any  inaccurate  motion  vectors  are  detected  and  the  corresponding  pixel  

removed from the  video observation  model.  The high-resolution  video still  is  then 

estimated using the decoded frames and subpixel motion fields.

 2.3  Critical Video Quality

Given  each  video  has  multiple  I-frames  and each  I-frame  has  thousands  of 

keypoints, a system could exhaust available space to store such information. There is,  

however,  a  “sweet spot” between video quality and accuracy that  has been dubbed 

critical  video  quality  [17].  This  has  been  applied  to  facial  matching  and  tracking 

algorithms, but can also be applied to video matching. During testing facial detection,  

bandwidth usage was reduced up to 29 fold [17] using a prototype surveillance system 

operating  in  two  modes.  When  the  surveillance  system  is  not  detecting  faces  it  

streams low quality video. When a face is detected the system raises the quality of the 

video. Thus, the bit rate is reduced between surveillance cameras and the monitoring  

stations.   This  can  also be applied  to  video matching  by finding the  critical  video 

quality to reduce storage space without compromising the accuracy of the matching 

algorithm. High-resolution stills can improve this accuracy by increasing quality and  

16



thus keypoints.

 2.4  Hash Techniques

Hash functions are mathematical functions that take large sets of data as input  

and output a smaller set of data. An index to the inputs location is often placed in a 

table or array. Hash functions enable fast table lookups to detect similar or duplicate  

entries in a large file. Hash functions must be deterministic and provide uniformity  

across its output range.

Some hash tables use a single hash function. The input and the resulting value 

is the index into the table where that input is stored. The tables are generally linked  

lists and provide a fast way to find entries in large datasets like dictionaries or word  

lists.

Cryptographic hash functions are used for verification and authentication [18]. 

These hash functions have several notable characteristics. It is difficult to determine 
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the original input given the hash digest as any change in the input results in a large 

change in the digest and it is extremely improbable to find two different inputs that  

result in the same digest. Regardless of the original input length the message digest  

will be a fixed length. These desirable properties lead to cryptographic hash functions  

for security tasks. Passwords can be stored securely as their digests. Using a public 

key encryption scheme data can be signed to provide authentication or privacy.

Geometric hashing is used in computer  vision tasks  [7]. First a set of affine 

features are extracted from an image using feature algorithms like SURF or SIFT. The 

multidimensional  hash  value  is  normalized  for  the  space  defined  by  the  set  of 

features. 

Bloom filters use multiple hash functions (specific or arbitrary) to determine  

and construct a membership table [7]. Inputs are evaluated by the hash functions, the 

outputs of which is used as indices in the hash table. The hash output indices are set 

to 1 to signify the input is a member of the Bloom filter.  A query can be made to  

determine if the query is possibly in the table or not. The query goes through the same  

hashing process and the output indices are checked if they are set to 1. If all of the  

indices are set to 1 then the query may be a member of the Bloom filter, but if any of  

the indices are set to 0 then the query is not a member of the Bloom filter. A Bloom 

filter  does  not  allow  the  removal  of  elements  from  the  filter,  only  additions. 

Furthermore  the  Bloom  filter  is  a  probabilistic  hash.  That  is,  there  may  be  false 

positives, which correlates to matches of similar but not exactly the same features.
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 2.4.1  Bloom Filter

A  Bloom  filter  is  a  simple  and  efficient  randomized  data  structure  that 

represents  a set  and supports  membership  queries  [6].  Bloom filters  can give false 

positives  and  the  probability  of  a  false  positive  increase  with  the  size  of  the  data 

structure.  Even with false  positives,  the Bloom filter's  simplicity,  performance and 

space efficiency ensure wide use. A Bloom filter is a bit array with all bits initially set  

to zero. Multiple hash functions are used for robustness and reduce the likelihood of  

collisions in the array.  Elements can be added to the set and the set can be queried to  

determine if an element is part of the set.

For example, suppose the element x is being added to a Bloom filter as seen on 

the left side of  Figure 5. Three different hash functions are applied to  x, giving the 

indices of 3, 5, and 9. The element at those indices in the Bloom filter are set to 1.  

The right  side shows  y being added to the Bloom filter.  The three hash functions, 

when given y as an input, produce the indices 1, 5, 8. These indices are also set to 1 in  

the array.

In  a  similar  fashion it  can  be  determined  if  an  element  is  contained  in  the  

Bloom filter. The query is hashed and if any of the locations in the bit array are zero  

then it is not part of the set. Figure 6 shows how a false positive can occur. Given the 

same Bloom filter  from  Figure 5 containing  elements  x and  y,  a  query of  w with 

indices of 1, 5, and 9 will show that each index from query w is one. This however is 

a false positive because the indices that are one included in the filter due to elements  

x  and  y.  Elements  cannot  be  directly  removed  from  the  Bloom  filter.  However,  
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another Bloom filter can be constructed to contain only the elements one wishes to 

remove. 

The Bloom filter  performance can be improved using the technique  in   [6]. 

Bloom  filters  are  simple  data  structures  and  any  improvement  in  Bloom  filter  

operations, translates into an application speed up as well. By modifying the Bloom 

filter's  construction  and  evaluation  of  it's  pseudorandom  hash  functions  a 

computational reduction can be achieved.

For  example,  two  hash  functions,  h1(x) and  h2(x),  can  simulate  many  hash 

functions of the form gi(x) = h1(x) + ih2(x), with  i being in the range of 0 to  k-1 to 

generate k hash functions [6]. Using two hash functions in this way does not increase 

the false positive rate any more than that of a normal Bloom filter.

Figure 6: Bloom filter collision example.
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 2.5  Image Matching

Image matching techniques usually involve acquiring keypoint  features from 

the  images  in  questions  and  comparing  them.  These  techniques  apply  to  facial  

recognition, pattern recognition, background matching [8], digital video forensics [19] 

and ballistics matching [20].

Casings  from  bullets  show  distinguishing  characteristics  that  tie  it  to  a 

particular firearm. The firing, feeding and ejection mechanisms all leave their marks  

on the casing  [20]. The features are calculated from the test image and indexed into  

descriptors  that  are  searchable.  Preprocessing  includes  converting  the  image  to 

grayscale and isolating the center, circular region of the breechface, or firing pin. A 

derivation [21] of the Kanade Lucas Tomasi equation 

=∫∫
W
[J x d

2
− I x−d

2
]

2

w x dx  (11)

is used to calculate the dissimilarity,  , where  W represents two windows, one with 

image  I  and  another  image  J, x =  [x,  y]T,  the  displacement  d = [dx,  dy]T and  the 

weighing function w(x) is usually set to 1. Good features are located by examining the 

minimum  eigenvalue  of  each  2x2  gradient  matrix  [20].  Prominent features  are 

selected  and stored  in  a  database  for  comparison  to  other  images.  The  number  of 

matching points between the two images measures the similarity.

Feature  matching  can  determine  distinct  locations  from a  set  of  images  [8] 

which  results  in  a  subset  of  images  with  the  same  background  that  are  useful  in 
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determining  suspect,  witnesses  or  other  individuals  at  a  crime  scene.  This  method  

generates keypoints to compare two images. 

The SIFT algorithm achieved a 81.6% accuracy using unreduced keypoints and 

a  matching  threshold  of  140.  The  accuracy  of  81.1%  was  achieved  with  reduced 

keypoints and a matching threshold of 6 [8]. The SURF algorithm achieved a 78.3% 

accuracy when using unreduced keypoints and a matching threshold of between 1351 

and  1363.  The  accuracy  of  79.6%  was  achieved  using  reduced  keypoints  and  a 

matching threshold of 57. The accuracy of 80.8% was achieved with the inclusion of  

the comparison test  [8]. The SIFT and SURF algorithms performed the best with no 

statistically significant change in accuracy [8]. This research however, did not include 

the PCA-SIFT algorithm in testing.

Other  methods  are  applied  to  fingerprints  and  facial  recognition  [22]. 

Fingerprint recognition uses minutiae extraction and pattern recognition.  The ridges  

are reduced to one pixel width and the minutiae along that ridge are saved. The two 

patterns  are  spatially  aligned  and  an  edit  distance  is  computed.   This  shows  the 

minimum cost edit  operation to transform one minutiae pattern into the other  [22]. 

The facial  recognition system uses a feature extraction method with eigenfaces and 

fisherfaces. This research also provides a unifying approach for the analysis of any  

type of evidence [22] that can be applied to video and image matching for intelligence 

and forensics. 

 2.6  KD-Tree

First discussed in terms of image and video  [4], a kd-tree is a data structure 
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with  points  in  a  k-dimensional  space.  Each  non-leaf  node  can  be  thought  of  as  a 

hyperplane  that  splits  the  dimensional  space  into  subspaces.  There  are  number  of 

methods  to  determine  were  the  split  should  occur.  The  standard  split  divides  the  

dimensional  space  based on which  data  points  have  the  maximum spread  [4].  The 

splitting value is the coordinate median of the points in that dimension. The midpoint  

splitting  method  splits  the  dimensional  space  through  the  center  and  bisects  the  

longest side of the dimensional space  [23]. The sliding-midpoint method attempts a 

midpoint split. If all the data points are on one side of the hyperplane then the plane  

slides toward the points until it encounters the first of the data points. This leaves the  

single data point as a leaf and the splitting recurses on the remaining points [23]. The 

points on either side of the hyperplane form the left and right subtrees. The kd-tree 

data structure supports adding/removing elements, balancing and searching.

Searching is done using a Nearest Neighbor algorithm. The algorithm starts at 

the root node and moves left or right down the tree depending on whether the value is 

greater than or less than the current node.  The algorithm works its way to a leaf node 

and saves that  value as the current best  or current nearest  neighbor.  The algorithm 

proceeds  recursively  through the  tree  comparing  the  current  node with  the  current  

best.  If the current node is better than the current best,  then that node becomes the  

current best. This process continues until the root node is reached and the search is 

complete.

For a large number of dimensions, the nearest neighbor algorithm slows down 

and  becomes  inefficient.  Modifications  can  be  made  to  adapt  to  these  high 
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dimensional trees. Keeping track of the best k-nearest neighbors to a point instead of 

just  one can improve the algorithm when high dimensionality is  involved. Another  

method is to approximate the nearest neighbor.

The Best Bin First algorithm approximates a solution for the Nearest Neighbor  

problem. The algorithm finds the nearest neighbor for a large fraction of queries and 

finds  a  very  good  neighbor  the  remaining  times  [24].  A  kd-tree  with  a  low 

dimensionality  can  use  the  Nearest  Neighbor  algorithm.  A  query  using  Nearest 

Neighbor should, with  high probability, be within the bin where the query falls, or in  

a neighboring bin  [24]. The algorithm backtracks using a branch-and-bound search. 

During  the  backtracking  stage,  branches  of  the  tree  can  be  thrown  away  if  they 

represent a space that is further away from the query than current nearest neighbor. In  

higher  dimensionality  there  are  far  more  bins  to  be  examined.  By  acepting  an 

approximate nearest neighbor the search can be bounded and return the best nearest  

neighbor found up to that point.

Approximate  match  can even be sped up by using multiple  randomized kd-

trees  or  searching  hierarchical  k-means  trees  with  a  priority  search  order  [25]. 

Multiple randomized trees are constructed using the original kd-tree algorithm [4] and 

splitting the data points in half at each level where the data points show the greatest  

variance. A single priority queue is maintained across all the trees so the search can 

be  ordered  by  increasing  distance  to  each  bin  boundary  [25].  This  has  increased 

search  performance  up  to  about  20  random trees.  More  than  20  trees  leads  to  no 

further performance increase or decreases performance.
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The hierarchical  k-means tree is  constructed by splitting data  points  at  each 

level  into  K distinct  regions  using  k-means  clustering  [25].  The  algorithm  is 

recursively applied to the data points in each dimensional plane until the number of 

data points is smaller than  K.  This method has shown a performance increase with 

some datasets but suffers from higher build times than randomized kd-trees.

 2.6.1  KD-Tree construction and Matching

The  program  used  for  the  kd-tree  construction  and  image  matching  is  

autopano-sift  [5]. The software was developed for panoramic image stitching, which 

puts together a series of smaller images of a larger scene to yield a single panoramic  

image.  The  SIFT  keypoints  are  generated  and  added  to  a  kd-tree  of  a  large 

dimensionality  (128).   The keypoints  are  loaded from each image in  the set  and a 

global kd-tree is created containing all of the keypoints. For every point in the tree the  

nearest  neighbor  is  approximated  using  Best  Bin  First.  Matches  are  grouped  into 

partitions  containing  at  least  three  matches  then  filtered  using  the  RANSAC 

algorithm. Control points are created for the remaining matches. The control points,  

as seen in Figure 8,  are then used to determine what areas in an image matches with 

another in the partition. The output of this program is a file that can be processed by 

Hugin [26] to perform panoramic stitching, which goes unused in this research. More 

importantly,  it  displays  matching  features  between  images  and  the  grouping  of  

images. The groups of images that match to one another are called components.
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 2.7  Random Sample Consensus

The RANdom SAmple Consensus (RANSAC) algorithm estimates parameters 

from a set of data which contains outliers [27]. The iterative process randomly selects 

a  subset of data  that  are  hypothetical  inliers.  The hypothesis  is  then tested.  First  a  

model  is  fitted  to  the  hypothetical  inliers.   All  of  the  other  data  points  are  tested  

against  the  model  and  if  a  point  fits  the  model  well  enough,  it  is  considered  a 

hypothetical inlier. If there are sufficiently many hypothetical inliers then the model is 

reasonably  good.  The  model  is  then  tested  by  estimating  the  error  of  the  inliers 

relative to the model. This process is repeated a fixed number of times. Every time the  

model is rejected it  is because there are too few points classified as inliers. A new 

model is accepted if its error is lower than the currently saved model.

 2.7.1  RANSAC Model Matching

The RANSAC algorithm filters  out  inaccurate  or  incorrect  feature  matches. 

For each partition containing similar images a model is fit to determine the geometric  

consistency of the matches. The incorrect matches are defined by providing a model  

to the algorithm, which fulfills  two things  [28]. First,  the model can be fit using a 

small number of input feature matches and secondly, the model can output a fitness  

value  of  a  novel  match  once  it  has  been  fit.  The  amount  of  testing  needed,  k,  is 

determined by

k=w−n f⋅SD k =w−n f⋅1−wn

wn ,
 

(12)
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where w is  the  fraction  of  points  that  is  known to  be  correct,  n  is  the  number  of 

elements  required  to fit  the model,  SD(k)  is  the standard deviation  of  k and  f is  a 

chosen  factor.  The  model  provides  a  mapping  of  coordinate  systems  between  two 

images [28]. A two-dimensional transformation matrix,  M, is used as the model. The 

matrix fits the model of two image keypoint pairs in two images,  I1 and  I2.  That is, 

there is one line in each image, A1 to B1 in I1  and A2 to B2 in I2. The points A1  and A2 

are matches, as are  B1  and B2. These pairs, with a large probability, w, represent the 

same  image  feature  in  both  images.  The  process  of  coordinate  transformation  is 

composed  of  translating  point  A2  into  the  coordinate  origin,   rotating  the line,  by 

angle  α, so that the orientation is the same, scaling of the coordinates, by a scaling  

factor  s,  so  the  two  lines  are  the  same  length  and  finally  translating  A2 into  the 

position of A1. The scaling factor is

s=∣B1−A1∣
∣B2−A2∣ ,  (13)

and the transformation matrix is

M =[s⋅cos s⋅−sin  s⋅cos⋅−A2x
−sin⋅−A2y

A1x

s⋅sin  s⋅cos s⋅sin ⋅−A2x
cos⋅−A2y

A1y

0 0 1 ] .
 

(14)

The  position  for  every  keypoint,  P  =  (x, y),  in  I2   is  used  to  estimate  the 

expected  position  in  I1  by  multiplying  P's  homogenous  coordinates  with  the 

transformation matrix (M)
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P '=M⋅P=M⋅[ x
y
1 ] .  

(15)

A  comparison  can  be  made  between  the  model  expected  and  the  actual  keypoint  

position in I1. The distance, d, is computed using d(P, M, K) = |K - M • P| = |K - P'|, 

where  K is the actual position of the matching keypoint in  I1  and  P'  is the expected 

position. There can be four results from this comparison

• d is small, match is correct. This is the most ideal case.

• d is  small,  match  is  incorrect.  This  case  is  unlikely,  but  can  occur  with 

repeating  elements,  such  as  a  series  of  windows.  There  are  mechanisms  in  

place  to  make this  occurrence  unlikely.  The quality  of  the match  takes  into 

consideration the distance to the second-best match as well as the  best match.  

If the second best match is a good match, that is two features matching to one  

feature,then it is likely to be a repeating feature and is discarded [28].

• d is  large,  match  is  correct.  This  occurs  with  moving  objects,  where  the 

features  are  matched  correctly  but  the  object  has  moved  within  the  frame.  

These cases are discarded.

• d is large, match is incorrect. This case is discarded.

 2.8  Summary

The  image  feature  generation  algorithms  discussed  include  Scale  Invariant  

Feature  Transform (SIFT),  Speeded-Up Robust  Features  (SURF) and Histogram of 
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Ordered Gradients (HOG). Each algorithm calculates  image features  in a particular  

way. Preprocessing videos or images using  high resolution still extraction or critical  

video quality techniques may increase the usability of smaller videos and images of 

lesser qualities. With these techniques, lower quality videos and images may produce  

stronger features to use with matching. Using data structures, such as Bloom filters or 

kd-trees, to organize keypoint files may lead to an increase in run time and produces  

more accurate results.
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 III  Methodology

This chapter discusses the specifics of the datasets used in testing and presents  

the  methodology  for  the  matching  experiments  and  how  they  are  measured.  Two 

datasets are used. The first dataset is a series of 125 photos taken from around a home 

and computer lab. The second dataset are images extracted from the first 5 minutes of  

a video. 

Varied  methods  are  used to  calculate  metrics  for  each  test.  The  tests  being  

performed are run time tests, grouping accuracy tests, size and quality comparisons.

 3.1  Datasets

Two datasets  are tested.  The first  is from  [8] and includes 119 images with 

resolutions of 1600x1200 and 6 images with resolutions of 640x480 from 6 locations.  

The locations  are  a home office,  a  guest  room,  a  stairwell,  a  living room,  a  home  

exterior and a computer lab. The home office is further split into two groups because 

the two sets of images taken in the home office are taken 180 degrees off from one 

another.  The images  per group is in  Table 1. The viewpoints at  each location vary 

widely in rotation, angle and distance from subject. For the interior images the camera 

distance is between 2.75 feet and 11 feet, the rotation varied by approximately  ±15 

degrees and the camera  angle from the subject  varied more  than  ±50 degrees.  The 

exterior images varied 50 feet with  ±10 degrees of rotation and over  ±180 cardinal 

degree direction change.

The second set of images are extracted frames from the first 5 minutes from 
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the season 13 episode 16 of  Good Eats entitled "American Classics VII: Don't be a 

Chicken of Dumplings". The frames were extracted using the ffmpeg program [29]. 

The first two images from the set were of a black screen and not used because of the  

absence of any features. The remaining 298 images have a resolution of 656x368. The 

images  contain  the  upper  torsos  of  one  to  three  people  in  front  of  different  

backgrounds  with  the  exceptions  of  title  screen  and two maps.  The image  groups, 

classified  by  the  background  scene,  are  the  flag,  the  kitchen,  the  telephone,  the  

bookshelf,  the  title  screen,  the  first  map  and  the  second  map.  The  breakdown  of 

images per group can be seen in Table 2. 

Table 1: Image groups and number of images in each group.

Group Number of Images
Home Office 1 38
Home Office 2 14
Computer Lab 27

Outside 32
Guest Room 3

Stairwell 3
Living Room 8

 3.2  Matching with SIFT

The SIFT software [30] uses the algorithm described in Section 2.1.1. A batch 

file is used to convert the JPEGs to a Portable Gray Map (PGM) filetype. The SIFT  

software creates keypoint files from each PGM and a MATLAB® program reduces 

the keypoints to 102. Another batch file cycles through the keypoint files comparing 
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each one to all of the others. The batch file saves the matched points to a text file and 

creates  an  image  file  showing  which  of  the  features  in  the  images  matched.  An 

example of this can be seen in Figure 7.

 3.3  Matching with SURF

The original SURF software, discussed in Section  2.1.2, was implemented by 

Herbert  Bay  [31].  The  MATLAB® implementation  of  the  SURF  matching  was 

implemented by D. Alvaro and J.J. Guerrero. Images are converted to a PGM format  

and a batch file generates the keypoint files. MATLAB® reduces the keypoints for 

each file to 102 and performs the matching. Image files similar to the SIFT output are 

saved showing what  features  in  each image are matched.  Text  files  are  also saved  

with the number of features matched between each image pair.

 3.4  Matching with Bloom Filters

The Bloom filter implementation [7] is a simple C program that runs from the 
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Table 2: Image groups and number of images in each group.

Group Number of 
Images

Flag 28
Kitchen 136

Telephone 3
Bookshelf 81

Title Screen 10
Map 1 24
Map 2 16



command  line.  This  implementation  of  a  Bloom  filter  uses  two  arbitrary  hash 

functions and has a size of 2500000. It parses the input my lines and calculate  the  

hashes of each line.  Input is  provided by an external  file,  such as a word list.  The 

Bloom filter was constructed and queries can then be made. If a query was possibly in  

the Bloom filter then query would be returned and printed to the screen. If the query 

was not part of the Bloom filter then nothing was printed to the screen. For testing,  

the keypoint file were provided as input to the Bloom filter.

 3.5  Matching with kd-trees

The kd-tree data  structure is  implemented  through autopano-sift  [5].  This  C 
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program  performs  both  keypoint  file  generation  and  image  grouping  using  two 

different commands. The kd-tree is constructed during the image group portion of the  

process. There is an option to downscale the images prior to keypoint generation. The  

default action is to double the size of the images and then find keypoints. This default  

option was used in all of the testing.

The  matching  portion  of  autopano-sift  groups  similar  images  together  for 

panoramic stitching. An example of the output showing the features that match is in 

Figure 8.  The option to turn RANSAC on and off was used for run time testing. For  

the remaining tests RANSAC was left on and the pre-filter data was taken from the on  

screen output. The maximum number of matches can also be set. This is the number  

of matches that will be saved once grouping is done. The default of 16 was left on.  

Data  was  again  taken  from  the  on  screen  output  for  tests  that  required  the  total  

number of matches found. 

For the accuracy testing the full  dataset is  input to autopano-sift  while only 

two images are used as input for size and quality testing.
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 3.6  Run Time Metric

The  time  taken  to  complete  the  matching  process  was  measured  for  each 

matching  method.  The  times  for  SIFT  and  SURF  are  broken  down  into  step  of 

matching,  keypoint  generation,  keypoint  reduction  and  matching.  The  kd-tree  is 

broken down into keypoint generation and matching/grouping. The kd-tree does not  

use reduced keypoints.  The kd-tree is  run twice,  once with RANSAC on and once  

with it off. This test is run with both datasets.

 3.7  Accuracy Calculating

For  kd-tree  testing  the  percentage  correctly  grouped  is  the  proportion  of 

images from the same location that are in the largest component for that location. For  

example, there are 10 total images of an office. After autopano-sift groups the images,  

the largest component containing images of the office only contained 8 of them. The 

percentage correctly grouped together would be 80%, 8 divided by 10. The other 2  

images from the office are in their own two separate components, not grouped with  

any other images. 

If the largest group of office images only contained 1 image, meaning the other  

9 images are in 9 other components each containing a single office image, then the 

percentage correctly grouped is 0%. Every image in this case is in a group with just  

that single image not matched to any other images in the office group. This test is run  

with both datasets.

 3.8  Size and Quality Comparison Metric
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Testing for size and quality is performed in the same manner. A subset of 30 

images  is  chosen.  For  size  testing  each  image  is  resized  to  1600x1200,  800x600, 

400x300 and 200x150. The quality of the images stays at 90%.

For quality testing each image is saved at a JPEG quality level of 90%, 70% 

and 50%. The size of the images stays at 1600x1200.

Three tests are run using each matching method (SIFT, SURF and kd-tree) for 

size and quality. RANSAC is left on for the kd-tree and the on screen output displays  

the both the data  before RANSAC filtering and after  filtering.  During testing each 

size  is  compared  to  every  other  size  and  each  quality  is  compared  to  every  other  

quality. The images are only compared to themselves at different sizes and qualities.

The  average  number  of  features  matched  and  the  standard  deviation  is 

calculated.  The sizes and qualities are tested to determine if the difference between 

comparisons and their opposites (quality 90% compared to quality 70% and  quality 

70% compared to  quality  90%) is  statistically   significant.  A two-tailed  t-test  [32] 

with a 95% confidence interval is used to determine significance. 

 3.9  Summary

Four tests  are  performed using SIFT,  SURF and the kd-tree.  These test  run 

time,  grouping  accuracy  and  the  influence  of  size  and  quality  on  the  number  of  

features matched. This testing is performed on an Intel Core2 Duo T9500 2.6 GHz 

laptop with 3.5GB of RAM.
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 IV  Results

This  section  covers  the  research  results.  This  includes  Bloom  filter  

performance, run time results, grouping accuracy of the kd-tree implementation, size 

and quality comparison results. These tested the SIFT and SURF algorithms and kd-

tree implementation, with and without RANSAC filtering.

 4.1  Bloom Filter

Bloom  filter  software  [7] is  used  to  build  the  filter.  The  Bloom  filter 

successfully inserted a keypoint file. Trying to query a similar keypoint file did not 

yield any useful results because of this the Bloom filter was not used for additional  

testing. The keypoint files are from the Home Office 1 group of 125 dataset. 

Table 3 compares the hash values calculated by the Bloom filter. Image 1 and 

Image  2  are  matching  keypoints  from two  similar  images.  Each  row represents  a 

single keypoint that matches using SIFT. The hashes are not similar enough to return  

a match when a keypoint file is queried.

Hash functions are used to construct Bloom filters. Exact matches are simple  

to  find  because  they  will  hash  to  the  same  values.  Querying  for  similar  matches 

however becomes difficult. The small differences in similar keypoints result in large 

changes in the hash values. Bloom filters do not function in a way that would result in  

matches of similar keypoints.

 4.2  Run Time Testing

The timing results  for  the 125 image set  are  shown in  Table 4.  The timing 
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results of the 298 image set taken from the video are shown in  Table 5. The tables 

show the amount of time it takes to generate the keypoint files for each method, the  

time it takes to reduce the keypoint files and finally the time it takes to perform the  

matching.  The SIFT algorithm produced, on average,  4474.7 keypoints for the 125 

image  set  and  807.1  for  the  298  image  set.  The  SURF  algorithm  produced,  on 

average, 2442.4 keypoints for the 125 image set and 275.9 for the 298 image set. 

The reason that the keypoint generation for the kd-tree software take so much  

longer  is  because  the  autopano-sift  software,  by  default,  doubles  the  size  of  the  

images to generate more keypoints. This is resource intensive when starting with large 

files to begin with. 

Even  though  the  second  set  contains  298  images,  the  execution  times  are 

considerably shorter because the size of the images are smaller  (656x368) than the 

images from the first set (largely 1600x1200). During testing, a set larger than 313 
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Table 3: Bloom filter hash values.

Hash function 1 Hash function 2
Image 1 Image 2 Image 1  Image 2
1046594 1732079 48495 2052890
902123 257266 1163211 192032
348358 2482033 770368 2078818

1869278 1439167 342202 1840872
1768528 1835948 1302820 1968954
535535 440890 1566579 1567470
1106069 1716220 1882970 58061
1636090 2481305 671344 56906



images at a resolution of 656x368 exhausts the memory needed for the kd-tree used 

by the autopano-sift program. 

Another  factor  to  consider  is  that  SIFT  and  SURF  matching  is  run  using 

MATLAB® while autopano-sift grouping is a C implementation. Code optimization 

may contribute to the faster or slower run times.

 4.3  Accuracy

The accuracy results, using the calculation discussed in Section 3.7 are shown 

in Tables 6 and 7. 

The accuracy for the 125 image set using the kd-tree, shown in Table 6, with 

RANSAC is 51.2% and 73.6% without. Some of the image groups tested are better 

suited for kd-tree matching.  Home Office 1 and Home Office 2 are  similar  scenes  

containing  the same model  of desk with cluttered  shelves  on opposite  sides  of  the  

same  room.  The  kd-tree  with  RANSAC grouped  78.9% of  Home  Office  1  image 

together but only 31.7% of Home Office 2.  Some of the Home Office 2 images ended  

39

Table 4: Matching time taken for the 125 image set.

Algorithm Generate 
Keypoints

Reduce 
Keypoints Matching Total Time 

Taken

Average # 
of 

Keypoints

% of Time 
Spent 

Matching
SIFT 23 min 1 hr 36 min 4 hr 5 min 6 hr 4 min 4474.7 67.30%
SURF 3 min 15 min 3 hr 29 min 3 hr 47 min 2442.4 92.10%

KD-tree 
with 

RANSAC
2 hr 36 min N/A 1 hr 11 min 3 hr 47 min 9807.3 31.30%

KD-tree 
without 

RANSAC
2 hr 36 min N/A 1 hr 6 min 3 hr 42 min 9807.3 29.70%



up being grouped with some of the Home Office 1 images because of the similarities  

of  the  scenes.  Home Office  1  is  also  being grouped before  Home Office  2 which  

attempts to construct a full  panoramic image of Home Office 1 with the following  

images from Home Office 2.

RANSAC is spreading the images among too many groups instead of adding 

image to groups already made.  Autopano-sift  views each consecutive image as the 

next part  of a panoramic image.  With RANSAC on it  does not make a connection  

between  office  image  1  and  office  image  5,  for  example.  The  first  4  images  are  

similar enough to be grouped together but office image 5 is just different enough to be  

put in a new group.

The Computer Lab images have a low percentage of correct groupings as well.  

The Computer Lab heavily featured people that obscured the background scene. The  
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Table 5: Matching time taken for the 298 image/video set.

Algorithm Generate 
Keypoints

Reduce 
Keypoints Matching Total Time 

Taken

Average # 
of 

Keypoints

% of Time 
Spent 

Matching

SIFT 9 min 39 min 3 hr 47 
min

4 hr 35 
min 807.1 82.50%

SURF 1 min 28 min 1 hr 29 
min 2 hr 1 min 275.9 73.60%

KD-tree 
with 

RANSAC
21 min N/A 29 min 50 min 1072.1 58.00%

KD-tree 
without 

RANSAC
21 min N/A 22 min 43 min 1072.1 51.10%



features that people have and the features that background scenery have are different.  

The matching that autopano-sift is doing focuses on background features and with the  

background being behind the people produced a smaller grouping.

The Stairwell images had a large variation in position. These variations were 

too large for autopano-sift to overcome and match features too. This resulted in each 

image of the stairwell being in a 3 groups with only 1 image each.

An increase is seen in the largest groups with RANSAC turned off. Without  

RANSAC  to  filter  away  some  of  the  outlying  feature  autopano-sift  becomes  less  

likely to start new groups of images and continue to add to established ones.

The overall accuracy using the kd-tree, shown in Table 7, for the 298 image set 

is 40.6% with RANSAC and 46.9% without. The largest detriment to grouping this 

dataset is that the majority of the images feature at least on person. The Kitchen scene  

had 3 people visibly for some of the images. This is same issued that occurred with  
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Table 6: Accuracy for 125 image set using the kd-tree with and w/o RANSAC.

Group Number of 
Images

w/ RANSAC w/o RANSAC
Largest 

Component
Percentage 

Correct
Largest 

Component
Percentage 

Correct
Home Office 

1 38 30 78.9% 30 78.9%

Home Office 
2 14 5 35.7% 12 85.7%

Computer 
Lab 27 7 25.9% 12 44.4%

Outside 32 16 50% 30 93.8%
Guest Room 3 2 66.7% 3 100%

Stairwell 3 1 0.0% 1 0.0%
Living Room 8 4 50% 5 62.5%

Total 51.2% 73.6%



the Computer Lab images. A large portion of the background scene is blocked by the  

people in them. There is also movement around the scene when the host is present so  

not all parts of the scene are visible the entire time.

A similar  problem occurs with the Bookshelf  images.  This  scene is  a much 

closer shot than the Kitchen scene so the host occupies much of the background.

Algorithms for face  recognition  need to  be trained with a  large database of  

faces  because  these  algorithms  were  not  trained  it  is  difficult  to  identify  facial 

features (eyes, nose, mouth) of the people in the scenes [33]. Clothing are other parts 

of a person are subjected to the movements  of that  person. This  motion can cause 

enough  change  in  the  feature  for  it  to  not  be  matched.  The  motion  also  causes  a  

translation  of  the feature in  the 2D space.  The translation  cause that  feature to  by  

filtered out by quality checking as in Section 2.1.1.2.

The same increase happens with the 298 dataset as with the 125 dataset when  

RANSAC is off, albeit a smaller increase.  

 4.4  Size Comparison

Regardless of the order of comparisons, the SIFT algorithm produces the same 

number of matches for the image size pairs, shown in Table 8.

Half  of  the  time  comparing  larger  images  to  smaller  images  produces,  on 

average,  more  matches  than  comparing  smaller  to  larger  images  using  the  SURF 

algorithm, shown in Table 9. This can be seen with comparisons of 1-4, 2-4, 3-4 and 

their opposites.

SURF is not as robust when matching scaled images. The comparisons had a 
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difference of about 20 matches for each. As the scale decreases the SURF is unable to  

extract as many features as with larger images.

Like  SIFT,  the  order  of  comparisons  while  using  the  kd-tree  shows  no 

statistically significant differences, with and without RANSAC, shown in  Table 10. 

Significance was calculated using a two-tailed t-test. If the p-value are less than 0.05, 

which  correlates  to  a  95%  confidence  interval,  then  the  means  are  significantly 

different.  Autopano-sift  uses SIFT features  so it  is  reason to  expect  similar  results  

from SIFT and autopano-sift, as is the case for this test. There is also a small increase  

in  average  number  of  keypoints  matched  with  RANSAC off.  These  extra  matches  

however, may not be good matches. The average matches are rather high in the first 

place though so the addition of a few extra keypoints matched would not cause the  

images to be grouped separately. 

SIFT  is  a  scale-invariant  algorithm.  That  is,  scale  does  not  influence  the 
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Table 7: Accuracy  for 298 image/video set using kd-tree with and w/o RANSAC.

Group Number of 
Images

w/ RANSAC w/o RANSAC
Largest 

Component
Percentage 

Correct
Largest 

Component
Percentage 

Correct
Flag 28 15 53.6% 17 60.7%

Kitchen 136 50 36.8% 56 41.2%
Telephone 3 2 66.7% 2 66.7%
Bookshelf 81 23 28.4% 29 35.8%

Title 
Screen 10 8 80% 8 80%

Map 1 24 12 50% 12 50%
Map 2 16 11 68.8% 16 100%

Total 40.6% 46.9%



features generated from scaled images. SURF is scale-invariant also, but not as robust  

as  SIFT.  The number  of  SURF keypoints  detected  per  octave  quickly decays  with 

scale [3].

 4.5  Quality Comparison

Like the size comparison tests,  SIFT produces the same number of matches 

regardless of order, shown in Table 11.

The average number of matches found using SURF, shown in  Table 12, are 

very close regarding the order of comparison. Testing shows that the differences in 

the average number of matches found is not statistically significant.

On average, comparing lower quality image to higher quality, while using the 
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Table 8: Statistics at different sizes and 90% quality with SIFT.

Size compared to Size Average Keypoints 
Matched

Standard 
Deviation

1 to 2 82.4 4.8
2 to 1 82.4 4.8
1 to 3 65.5 4
3 to 1 65.5 4
1 to 4 56.5 4.9
4 to 1 56.5 4.9
2 to 3 72.1 4
3 to 2 72.1 4
2 to 4 56.1 5.2
4 to 2 56.1 5.2
3 to 4 57.6 6.2
4 to 3 57.6 6.2



kd-tree  implementation,  shown  in  Table  13,  produced  more  matches.  Although, 

testing shows that these difference are not statistically significant.

All  three methods  show no statistically  significant  difference  in the average  

number of keypoints matched. Significance was calculated using a two-tailed t-test. If 

the p-value are less than 0.05, which correlates to a 95% confidence interval, then the  

means  are  significantly  different.  Again,  there  is  a  small  increase  in  the  average  

number  of  matches  for  the  kd-tree  with  RANSAC off,  but  with  so  many matches 

already it is difficult to tell if these extra matches are actually meaningful.

Quality did not make much of a difference in the matching/grouping process.  

The actually difference between 90% quality and 50% quality does no provide enough 
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Table 9: Statistics at different sizes and 90% quality with SURF.

Size compared to Size Average Keypoints 
Matched Standard Deviation p value

1 to 2 90.6 3.1
0.62

2 to 1 91.1 4.6
1 to 3 84.7 4.7

0.63
3 to 1 85.3 3.7
1 to 4 72.2 5.5

0
4 to 1 52.9 13.2
2 to 3 88.8 3.5

0.25
3 to 2 87.7 3.8
2 to 4 73.4 6.4

0
4 to 2 54.6 14.5
3 to 4 74.5 6.5

0
4 to 3 55.7 12.8



loss in quality for thorough testing. To the human eye, the images appear very close  

to the same quality.

 4.6  Summary

Bloom filters because of the hash functions can not be used to match similar  

keypoint files. The differences in hash values for similar keypoints are too great to be 

matched.   The matching process is sped up by organizing keypoints into a kd-tree.  

Autopano-sift does take longer to generate the keypoints because it doubles the size  

of  the  images.  Grouping  accuracy  for  both  datasets  experience  a  decrease  when  
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Table 10: Statistics at different sizes and 90% quality using kd-tree with and w/o 
RANSAC.

Size 
compared to 

Size

w/ RANSAC w/o RANSAC
Average 

Keypoints 
Matched

Standard 
Deviation p value

Average 
Keypoints 
Matched

Standard 
Deviation p value

1 to 2 658 183.1
0.87

661.8 183.9
0.87

2 to 1 665.9 187.1 669.7 187.9
1 to 3 203.8 51.9

0.95
207 52.6

0.95
3 to 1 204.6 52.1 206.1 52.5
1 to 4 60.7 17.2

0.18
67.7 18.3

0.94
4 to 1 66.9 18.2 67.4 18.1
2 to 3 260.5 61.8

0.73
261.8 62

0.87
3 to 2 266.3 65.9 264.4 62.1
2 to 4 75.7 19.1

0.99
76.8 19.4

0.88
4 to 2 75.7 19 76 19.1
3 to 4 97.2 22.4

0.95
97.8 22.3

0.96
4 to 3 97.5 21.3 98.1 21.4



compared to previous SIFT and SURF matching research. This can be attributed to 

the background in the scenes being obscured by people. This is seen throughout the 

298 dataset results where nearly every scene had at least one person in it. 

SIFT and the kd-tree show no significant difference in the average number of 

keypoints  matched.  SURF  comparisons  with  the  smallest  images  does  show  a  

significant difference. This is due to SURF inability to handle changes in scale as well  
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Table 11: Statistics at different qualities and a 1600x1200 size with SIFT.

Quality compared to Quality Average Keypoints 
Matched Standard Deviation

90%-70% 95.6 3.1
70%-90% 95.6 3.1
90%-50% 93.6 3.1
50%-90% 93.6 3.1
70%-50% 93.5 3.4
50%-70% 93.5 3.4

Table 12: Statistics at different qualities and 1600x1200 size with SURF.

Quality compared to Quality
Average 

Keypoints 
Matched

Standard Deviation p value

90%-70% 100 1.2
0.58

70%-90% 100.2 1.6
90%-50% 99.3 1.2

0.28
50%-90% 98 6.3
70%-50% 99.5 1.3

0.4
50%-70% 99.2 1.5



as SIFT. All of the methods show no significant in the order of quality matches to a 

50% loss of quality.
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Table 13: Statistics at different qualities and 1600x1200 size using the kd-tree with and 
w/o RANSAC.

Quality 
compared 
to Quality

w/ RANSC w/o RANSAC
Average 

Keypoints 
Matched

Standard 
Dev. p value

Average 
Keypoints 
Matched

Standard 
Dev. p value 

90%-70% 4950.1 1618.7
0.95

4950 1619.2
0.94

70%-90% 4977.7 1610.6 4982.5 1611
90%-50% 3809 1280.3

0.93
3811.8 1280.2

0.93
50%-90% 3838.4 1282 3842.9 1281.8
70%-50% 3556.9 1194.9

0.97
3561.3 1194.8

0.97
50%-70% 3544.9 1212 3574.1 1191.3



 V  Conclusion

This research shows that using a kd-tree implementation does no worse than 

SIFT  and  SURF  in  terms  of  speed.  The  accuracy  tests  showed  that  the  kd-tree  

implementation grouped the 298 image set  with a 40.6% and 46.9% accuracy with  

RANSAC on and off respectively and grouped the 125 image set with an accuracy of 

51.2% and 73.6% with RANSAC on and off respectively. Previous tests showed just  

the SIFT algorithm matched the 125 image set with an accuracy of 81.6% at its best  

and 81.1% at its worst. The SURF algorithm had an accuracy of 80.8% at its best and  

78.3%  at  its  worst.  The  autopano-sift  program,  since  it  is  a  panoramic  stitcher,  

assumes the order in which the images are given to the program is the order they are  

in  the panoramic  series.  This is  why the accuracy is  much lower using the kd-tree 

implementation than just the SIFT and SURF algorithms. Some scenes were not ideal  

for this method of matching because of the addition of people in the scenes.

The order of comparison in regards to size did not make any difference with 

the SIFT algorithm. The algorithm found the same number of matches regardless if a 

larger  image was being compared to a smaller  one or vice versa.  The results  from 

testing the order of comparisons  using SURF showed that the order mattered for the  

comparisons with the 200x150 size images. In these cases comparing the larger image  

to the smaller one produced more matches on average. Using the kd-tree, there was no 

statistical difference regarding the order of matches, both with RANSAC on and off.

For  the  quality  comparison  the  SIFT  algorithm  found  the  same  number  of 

matches  for  each  quality  pair.  The  number  of  matches  found when testing  quality  
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comparisons  using  SURF algorithm was not statistically significant. The same is true  

for the matching with the kd-tree, the differences in quality comparison order was not  

statistically significant.

The kd-tree performs with less accuracy than the stand alone SIFT and SURF 

algorithms because of it's  panoramic  nature.  In some cases though it  was found to  

perform  the  matching  process  faster  than  the  other  two  algorithms.  Keypoint  

generation  takes  longer  because  autopano-sift  doubles  the  size  of  the  images  first.  

This  was  implemented  to  extract  more  keypoints  from  the  images  but  so  many 

keypoints are found in testing that not using this option may produce similar results 

with no significant loss to the number of keypoints needed to make correct matches.  

The  difference  in  quality  between  images  does  not  effect  the  number  of  matches  

found as much as the difference of size when using SURF and not at all with SIFT.  

There were large variability with the quality comparison using the kd-tree.  Kd-tree 

implementation  uses  unreduced keypoint  files,  producing many more  matches  than 

software ultimately uses. Unless explicitly configured otherwise, the software selects 

the strongest 16 matches by default and uses those.

 5.1  Future Work

Further work can be done in experimenting with different  data  structures to  

store  keypoint  files  to  increase  accuracy  and  speed  of  matching.  Another  area  to  

expand this research in is what methods can be used to determine if sections of video  

have been added, deleted or modified. Applying preprocessing of images as discussed 

in  [15] may be  useful.  Extract  higher  quality  images  from a  low quality  video  to  
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increase the number of matches found between videos.

51



Bibliography

1: National Center for Missing and Exploited Children. www.missingkids.com.

2: Lowe, D. G. "Distinctive Image Features from Scale-Invariant Keypoints". 
International Journal of Computer Vision. Vol: 60, Page(s) 91-110. 2004.

3: Bay, H., Ess, A.,  Tuytelaars, T., and Van Gool, L. "Speeded Up Robust Features 
(SURF)". Computer Vision and Image Understanding. Vol: 110, Page(s) 404-417. 
2008.

4: Bently, J. L. "Multidimensional Binary Search Trees Used for Associative Searching". 
Communications of the ACM. Vol: 18, Page(s) 509-517. 1975.

5: Nowozin, S. "autopano-sift software". http://user.cs.tu-berlin.de/~nowozin/autopano-
sift/index.html.

6: Kirsch, A. and Mitzenmacher, M. "Less Hashing, Same Performance: Building a Better 
Bloom Filter". Random Structures & Algorithms. Vol: 33, Page(s) 456-467. 2008.

7: Hystad, A. "Bloom filter software". http://en.literateprograms.org/Bloom_filter_(C).

8: Fogg, P. N. "Forensic Image Background Matching Using Scale Invariant Feature 
Transform (SIFT) and Speeded Up Robust Features (SURF)". Thesis. Air Force 
Institute of Technology. 2007.

9: Lowe, D. G. "Object Recognition from Local Scale-Invariant Features". ICCV ’99: 
Proceedings of the International Conference on Computer Vision. Vol: 2, Page(s) 
1150-1158. 1999.

10: Ledwich, L. and Williams, S. "Reduced SIFT Features For Image Retrieval and 
Indoor Localisation". Australian Conference on Robotics and Automation. 2006.

11: Ke, Y. and Sukthankar, R. "PCA-SIFT: A More Distinctive Representation for Local 
Image Descriptors". Proceedings of the 2004 IEEE Computer Society Conference  
on Computer Vision and Pattern Recognition. Page(s) 506-513. 2004.

12: Dalal, N. and Triggs, B. "Histograms of Oriented Gradients for Human Detection". 
Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision  
and Pattern Recognition. Vol: 1, Page(s) 886-893. 2005.

13: Bensrhair, A., Broggi, A., Rakotomamonjy, A. and Suard, F. "Pedestrian Detection 
using Infrared images and Histograms of Oriented Gradients". Intelligent Vehicle  
Symposium. Page(s) 206-212. 2006.

14: Dalal, N., Schmid, C. and Triggs, B. "Human Detection using Oriented Histograms of 
Flow and Appearance". European Conference on Computer Vision. Page(s) 428-
441. 2006.

52



15: Chen, D. and Schultz, R.R. "Extraction of High-Resolution Video Stills from MPEG 
Image Sequences". Proceedings of the 1998 International Conference on Image 
Processing. Page(s) 465-469. 1998.

16: Scultz, R. R. and Steveson, R. L. "Extraction of high-resolution frames from video 
sequences". IEEE Transactions on Image Processing. Page(s) 996-1011. 1996.

17: Korshunov, P. and Ooi, W. T. "Critical video quality for distributed automated video 
surveillance". In Proceedings of the 13th Annual ACM international Conference  
on Multimedia. Page(s) 151-160. 2005.

18: Low, R. M. and Stamp, M.  "Applied Cryptanalysis: Breaking Ciphers in the Real 
World". Page(s) 193-199. 2007.

19: Chupeau, B., Diehl, E., Lefebvre, F., and Massoudi, A. "Image and Video 
Fingerprinting: Forensic Applications". Proceedings of the SPIE. Vol: 7254, 
Page(s) 5-14. 2009.

20: Bijhold, J., Geradts, Z., Hermsen, R., and Murtagh, F. "Image Matching Algorithms 
for Breech Face Marks and Firing Pins in a  Database of Spent Cartridge Cases of 
Firearms". Forensic Science International. Page(s) 97-106. 2001.

21: Birchfield, S. "Derivation of Kanade-Lucas-Tomasi Tracking Equation". 
http://vision.stanford.edu/~birch/klt/derivation.ps. 1996.

22: Gonzalez-Rodriguez, J., Fierrez-Aguilar, J., Ramos-Castro, D. and Ortega-Garcia, J. 
"Bayesian Analysis of Fingerprint, Face and Signature Evidences with Automatic 
Biometric Systems". Forensic Science International. Vol: 155, Page(s) 126-140. 
2005.

23: Maneewongvatana, S. and Mount, D. M. "It's okay to be skinny, if your friends are 
fat". 4th Annual CGC  Workshop on Computational Geometry. 1999.

24: Beis, J. S. and Lowe, D. "Shape Indexing Using Approximate Nearest-Neighbour 
Search in High-Dimensional Spaces". Proceedings of the 1997 Conference on 
Computer Vision and Pattern Recognition. Page(s) 1000-1007. 1997.

25: Lowe, D. G. and Muja, M. "Fast Approximate Nearest Neighbors with Automatic 
Algorithm Configuration". VISAPP International Conference on Computer Vision  
Theory and Applications. Page(s) 331-340. 2009.

26: D'Angelo, P. "Hugin software". http://hugin.sourceforge.net/.

27: Bolles, R. C. and Fischler, M. A. "Random Sample Consensus: A Paradigm for Model 
Fitting with Applications to Image Analysis and Automated Cartography". 
Communications of the ACM. Vol: 24, Page(s) 381-395. 1981.

28: Nowozin, S. "Image Align Model Used in autopano-sift". http://user.cs.tu-
berlin.de/~nowozin/autopano-sift/matchmodel.pdf. 2004.

53



29: Bellard, F. "ffmpeg software". http://www.ffmpeg.org/.

30: Hess, R. "SIFT software". http://web.engr.oregonstate.edu/hess.

31: Bay, H., Van Gool, L. and Tuytelaars, T. "SURF software". 
http://www.vision.ee.ethz.ch/surf/index.html.

32: Student. "The Probable Error of a Mean". Biometrika. Vol: 6, Page(s) 1-25. 1908.

33: Chellappa, R., Phillips, P. J., Rosenfeld, A., and Zhao, W. "Face recognition: A 
literature survey". ACM Computing Surveys. Vol: 35, Page(s) 399-458. 2003.

54



REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of the collection of 
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty 
for failing to comply with a collection of information if it does not display a currently valid OMB control number.  
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
16-09-2010

2. REPORT TYPE 
Master’s Thesis    

3. DATES COVERED (From – To)
Sep 2008 – Sep 2010

4. TITLE AND SUBTITLE

     Applying Image Matching to Video Analysis
  

5a.  CONTRACT NUMBER

5b.  GRANT NUMBER

5c.  PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Adam Jay Behring

5d.  PROJECT NUMBER
N/A
5e.  TASK NUMBER

5f.  WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
     Air Force Institute of Technology
    Graduate School of Engineering and Management (AFIT/EN)

2950 Hobson Way
     WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
    REPORT NUMBER

     AFIT/GCO/ENG/10-02

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
     Air Force Research Laboratory/Multi-Sensor Exploitation Branch
     Mr. Chad Heitzenrater
     525 Brooks Rd.
     Rome, NY 13441
     (315)330-2575
     Chad.Heitzenrater@rl.af.mil

10. SPONSOR/MONITOR’S 
ACRONYM(S)

     AFRL/RIEG

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
              APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 Dealing with the volume of multimedia collected on a daily basis for intelligence gathering and digital forensics investigations requires 
significant manual analysis. A component of this problem is that a video may be reanalyzed that has already been analyzed. Identifying 
duplicate video sequences is difficult due to differences in videos of varying quality and size. This research uses a kd-tree structure to increase 
image matching speed. Keypoints are generated and added to a  kd-tree of a large dimensionality (128 dimensions). All of the keypoints for the 
set of images are used to construct a global kd-tree, which allows nearest neighbor searches and speeds up image matching. The kd-tree 
performed matching of a 125 image set 1.6 times faster than Scale Invariant Feature Transform (SIFT). Images were matched in the same time 
as Speeded Up Robust Features (SURF). For a 298 image set, the kd-tree with RANSAC performed 5.5 times faster compared to SIFT and 
2.42 times faster than SURF. Without RANSAC the kd-tree performed 6.4 times faster than SIFT and 2.8 times faster than SURF. The order 
images are compared to the same images of different qualities, did not produce significantly more matches when a higher quality image is 
compared to a lower quality one or vice versa. Size comparisons varied much more than the quality comparisons, suggesting size has a greater 
influence on matching than quality.
15. SUBJECT TERMS
      image matching, video matching, SIFT, SURF, kd-tree                                            

16. SECURITY CLASSIFICATION 
OF:

17. LIMITATION OF 
     ABSTRACT

UU

18. NUMBER 
      OF
      PAGES
64

19a.  NAME OF RESPONSIBLE PERSON
Dr. Gilbert L. Peterson

REPORT
U

ABSTRACT
U

c. THIS PAGE
U

19b.  TELEPHONE NUMBER (Include area code)
(937) 2785-6565, ext 4281; e-mail:  Gilbert.Peterson@afit.edu


	Abstract
	Table of Contents
	List of Figures
	List of Tables
	 I  Introduction
	 1.1  Research Goal
	 1.2  Sponsor
	 1.3  Assumptions
	 1.4  Organization

	 II  Related Work
	 2.1  Image Features
	 2.1.1  Scale-invariant feature transform (SIFT)
	 2.1.1.1  SIFT Keypoint Reduction
	 2.1.1.2  SIFT Match Comparisons

	 2.1.2  Speeded-Up Robust Features (SURF)
	 2.1.3  Histogram of Oriented Gradients (HOG)	

	 2.2  High-Resolution Stills
	 2.3  Critical Video Quality
	 2.4  Hash Techniques
	 2.4.1  Bloom Filter

	 2.5  Image Matching
	 2.6  KD-Tree
	 2.6.1  KD-Tree construction and Matching

	 2.7  Random Sample Consensus
	 2.7.1  RANSAC Model Matching

	 2.8  Summary

	 III  Methodology
	 3.1  Datasets
	 3.2  Matching with SIFT
	 3.3  Matching with SURF
	 3.4  Matching with Bloom Filters
	 3.5  Matching with kd-trees
	 3.6  Run Time Metric
	 3.7  Accuracy Calculating
	 3.8  Size and Quality Comparison Metric
	 3.9  Summary

	 IV  Results
	 4.1  Bloom Filter
	 4.2  Run Time Testing
	 4.3  Accuracy
	 4.4  Size Comparison
	 4.5  Quality Comparison
	 4.6  Summary

	 V  Conclusion
	 5.1  Future Work

	Bibliography



